149 research outputs found

    Mitigating the Transfer of Sediment and Pollutants from Soils to Water

    Get PDF

    Cutting the carbon cost of academic travel

    Get PDF
    Travel is a key part of academic life, and the carbon emissions associated with it are high. Personal decisions to reduce flying can contribute to climate action, and need not compromise research

    The effects of minimal tillage, contour cultivation and in-field vegetative barriers on soil erosion and phosphorus loss.

    Get PDF
    Runoff, sediment, total phosphorus and total dissolved phosphorus losses in overland flow were measured for two years on unbounded plots cropped with wheat and oats. Half of the field was cultivated with minimum tillage (shallow tillage with a tine cultivator) and half was conventionally ploughed. Within each cultivation treatment there were different treatment areas (TA). In the first year of the experiment, one TA was cultivated up and down the slope, one TA was cultivated on the contour, with a beetle bank acting as a vegetative barrier partway up the slope, and one had a mixed direction cultivation treatment, with cultivation and drilling conducted up and down the slope and all subsequent operations conducted on the contour. In the second year, this mixed treatment was replaced with contour cultivation. Results showed no significant reduction in runoff, sediment losses or total phosphorus losses from minimum tillage when compared to the conventional plough treatment, but there were increased losses of total dissolved phosphorus with minimum tillage. The mixed direction cultivation treatment increased surface runoff and losses of sediment and phosphorus. Increasing surface roughness with contour cultivation reduced surface runoff compared to up and down slope cultivation in both the plough and minimum tillage treatment areas, but this trend was not significant. Sediment and phosphorus losses in the contour cultivation treatment followed a very similar pattern to runoff. Combining contour cultivation with a vegetative barrier in the form of a beetle bank to reduce slope length resulted in a non-significant reduction in surface runoff, sediment and total phosphorus when compared to up and down-slope cultivation, but there was a clear trend towards reduced losses. However, the addition of a beetle bank did not provide a significant reduction in runoff, sediment losses or total phosphorus losses when compared to contour cultivation, suggesting only a marginal additional benefit. The economic implications for farmers of the different treatment options are investigated in order to assess their suitability for implementation at a field scale

    Comparison of Algorithms and Parameterisations for Infiltration into Organic-Covered Permafrost Soils

    Get PDF
    Infiltration into frozen and unfrozen soils is critical in hydrology, controlling active layer soil water dynamics and influencing runoff. Few Land Surface Models (LSMs) and Hydrological Models (HMs) have been developed, adapted or tested for frozen conditions and permafrost soils. Considering the vast geographical area influenced by freeze/thaw processes and permafrost, and the rapid environmental change observed worldwide in these regions, a need exists to improve models to better represent their hydrology. In this study, various infiltration algorithms and parameterisation methods, which are commonly employed in current LSMs and HMs were tested against detailed measurements at three sites in Canada’s discontinuous permafrost region with organic soil depths ranging from 0.02 to 3 m. Field data from two consecutive years were used to calibrate and evaluate the infiltration algorithms and parameterisations. Important conclusions include: (1) the single most important factor that controls the infiltration at permafrost sites is ground thaw depth, (2) differences among the simulated infiltration by different algorithms and parameterisations were only found when the ground was frozen or during the initial fast thawing stages, but not after ground thaw reaches a critical depth of 15 to 30 cm, (3) despite similarities in simulated total infiltration after ground thaw reaches the critical depth, the choice of algorithm influenced the distribution of water among the soil layers, and (4) the ice impedance factor for hydraulic conductivity, which is commonly used in LSMs and HMs, may not be necessary once the water potential driven frozen soil parameterisation is employed. Results from this work provide guidelines that can be directly implemented in LSMs and HMs to improve their application in organic covered permafrost soils

    Comment on "Rainfall erosivity in Europe" by Panagos et al. (Sci. Total Environ., 511, 801–814, 2015)

    Get PDF
    Recently a rainfall erosivity map has been published. We show that the values of this map contain considerable bias because (i) the temporal resolution of the rain data was insufficient, which likely underestimates rain erosivity by about 20%, (ii) no attempt had been included to account for the different time periods that were used for different countries, which can modify rain erosivity by more than 50%, (iii) and likely precipitation data had been used instead of rain data and thus rain erosivity is overestimated in areas with significant snowfall. Furthermore, the seasonal distribution of rain erosivity is not provided, which does not allow using the erosivity map for erosion prediction in many cases. Although a rain erosivity map for Europe would be highly desirable, we recommend using the national erosivity maps until these problems have been solved. Such maps are available for many European countries. (C) 2015 Elsevier B.V. All rights reserved

    On the evaluation of soil erosion models:Are we doing enough?

    Get PDF
    As any model of real-world phenomena, soil erosion models must be tested against empirical evidence to have their performance evaluated. This is critical to develop knowledge and confidence in model predictions. However, evaluating soil erosion models is complicated due to the uncertainties involved in the estimation of model parameters and measurements of system responses. Here, we undertake a term co-occurrence analysis to investigate how model evaluation is approached in soil erosion research. The analysis illustrates how model testing is often neglected, and how model evaluation topics are segregated from current research interests. We perform a meta-analysis of model performance to understand the mechanisms that influence model predictive accuracy. Results indicate that different models do not systematically outperform each other, and that calibration seems to be the main mechanism of model improvement. We review how soil erosion models have been evaluated at different temporal and spatial scales, focusing on the methods, assumptions, and data used for model testing. We discuss the implications of uncertainty and equifinality in soil erosion models, and implement a case study of uncertainty assessment that enables models to be tested as hypotheses. A comment on the way forward for the evaluation of erosion models is presented, discussing philosophical aspects of hypothesis testing in environmental modelling. We refute the notion that soil erosion models can be validated, and emphasize the necessity of defining fit-for-purpose tests, based on multiple sources of data, that allow for a broad investigation of model usefulness and consistency

    An investigation of the distribution of phosphorus between free and mineral associated soil organic matter, using density fractionation

    Get PDF
    We investigated whether density fractionation can be used to determine the distribution of organic phosphorus (OP) between free and mineral-associated soil organic matter (SOM)

    Tropical montane forest conversion is a critical driver for sediment supply in East African catchments

    Get PDF
    Land use change is known to affect suspended sediment fluxes in headwater catchments. There is however limited empirical evidence of the magnitude of these effects for montane catchments in East Africa. We collected a unique 4‐year high‐frequency data set and assessed seasonal sediment variation, waterpathways, and sediment response to hydrology in three catchments under contrasting land use in the Mau Forest Complex, Kenya's largest tropical montane forest. Annual suspended sediment yield was significantly higher in a smallholder agriculture‐dominated catchment (131.5 ± 90.6 t km−2 yr−1) than in a tea‐tree plantation catchment (42.0 ± 21.0 t km−2 yr−1) and a natural forest catchment (21.5 ± 11.1 t km−2 yr−1) (p < 0.05). Transfer function models showed that in the natural forest and the tea‐tree plantations subsurface flow pathways delivered water to the stream, while in the smallholder agriculture shallow subsurface and surface runoff were dominant. There was a delayed sediment response to rainfall for the smallholder agriculture and the tea‐tree plantations. A slow depletion in sediment supply suggests that the wider catchment area supplies sediment, especially in the catchment dominated bysmallholder farming. In contrast, a fast sediment response and depletion in sediment supply in the natural forest suggests a dominance of temporarily stored and nearby sediment sources. This study shows that the vegetation cover of a forest ecosystem is very effective in conserving soil, whereas catchments with more bare soil and poor soil conservation practices generated six times more suspended sediment yield. Catchment connectivity through unpaved tracks is thought to be the main explanation for the difference in sediment yield
    corecore